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1 Notations

N = {0, 1, 2, . . .}.

2 Three-by-two theorem

This theorem is extremely useful for basecase division.

Theorem 1 (three-by-two). Fix B ∈ N, B > 1, the base of our positional
number system. Fix also numbers x ∈ R, y ∈ R such that:

� 0 ≤ x < B3;

� B ≤ y < B2;

� x/y < B.

Define:

� q = bx
y
c, the true quotient;

� qe = b bxcbycc, our estimate of the quotient.

Then either (q = qe) or (q = qe − 1).

Proof.

Lemma 1. q ≤ qe.

Proof. Define δ = x− bxc; note that 0 ≤ δ < 1.

We have x
y
≤ x
byc = bxc+δ

byc . Then q = bx
y
c ≤ b bxc+δbyc c.

We now want to prove b bxc+δbyc c = b bxcbycc. Since δ < 1, for any integers

M,N,K, the following holds: (M < KN) =⇒ ((M + δ) < KN).
Substitute M = bxc, N = byc, K = bM

N
c+ 1.
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Lemma 2. bxc < B(byc+ 1).

Proof. bxc ≤ x < By < B(byc+ 1).

Define now the following values:

� u = bxc;

� v = byc;

� qmax = u+1
v

;

� qmin = u
v+1

.

Lemma 3. The following bounds hold:

1. qmax − u
v
≤ 1

B
;

2. u
v
− qmin < 1.

Proof. 1. u+1
v
− u

v
= 1

v
≤ 1

B
;

2. u
v
− u

v+1
= u

v(v+1)
. By lemma 2, u < B(v + 1), so

u
v
− qmin <

B(v+1)
v(v+1)

= B/v ≤ 1.

Lemma 4. q ≥ qe − 1.

Proof. We have:

� qmin <
x
y
< qmax;

� qmin <
u
v
< qmax.

Taking floor of both sides of these inequalities, we get:

� bqminc ≤ q ≤ bqmaxc;

� bqminc ≤ qe ≤ bqmaxc.
By lemma 3, qmax − qmin < 1 + 1

B
< 2. This means that bqmaxc − bqminc is

either 0, 1, or 2. We are only interested in the case of it being 2, as in other
cases (q ≥ qe − 1) holds automatically.

Suppose bqmaxc − bqminc = 2 and qe − q = 2. Then,

� bqmaxc = qe = bu
v
c, which implies u

v
≥ qe = q + 2;

� bqminc = q, which implies qmin < q + 1.

Together, these statements imply u
v
− qmin > 1, contradicting lemma 3.
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3 Approximation of inverse theorem

This theorem is useful for calculating the inverse of a number with Netwon’s
method; namely, it tells us how to find the initial approximation of the
inverse.

Theorem 2 (approximation of inverse). Fix B ∈ N, B > 1, the base of our
positional number system. Fix then n ∈ N, n > 0, the number of words in
our initial approximation. Fix a number x ∈ R such that Bn ≤ x < Bn+1.
Define:

� r = B2n

x
, the true inverse (scaled up by 2n places);

� re = b B2n

bxc+1
c, our estimate of the scaled-up inverse.

Then:

� r − 2 < re < r;

� Bn−1 ≤ re < Bn.

Proof. re < r is trivial: we increased the denominator (bxc + 1 > x) and
then took floor of the fraction.

Define now the following values:

� u = bxc;

� r′ = B2n

u+1
.

Note that re = br′c. Then r − r′ = B2n

u(u+1)
≤ B2n

B2n+Bn < 1. Now we have

r − re = (r − r′) + (r′ − br′c) < 1 + 1 = 2.

We can prove Bn−1 ≤ re < Bn by substituting the maximum and min-
imum possible values of bxc + 1 into re = b B2n

bxc+1
c. The maximum possible

value, Bn+1, gives us re ≥ Bn−1; and the minumum possible value, Bn + 1,
gives us re ≤ Bn − 1.

4 Root extraction

We are given d ∈ N and root order n ∈ N, n ≥ 2. We need to calculate b n
√
dc.

Define the “true” root ξ = n
√
d. Using unmodified Newton’s method, we

are going to iterate y 7→ Φ(y), where

Φ(y) = 1
n

(
d

yn−1 + (n− 1) · y
)
.
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If y = ξ · δ, then Φ(y) = ξ · ϕ(δ), where

ϕ(x) =
1 + (n− 1)xn

nxn−1
.

Theorem 3 (icky). 1 < ϕ(x) < x for x > 1.

Proof. We have

ϕ(x) < x⇔ 1 + (n− 1)xn < nxn ⇔ 1− xn < 0.

Now we will prove ϕ(x) > 1.
1+(n−1)xn
nxn−1 > 1⇔ (1 + ε)n−1(ε(n− 1)− 1) > −1, where ε = x− 1 > 0.

Substituting λ = ε(n− 1) > 0 and m = n− 1, we get

(1 + λ
m

)m(λ− 1) > −1.

The sequence Em = (1 + λ
m

)m increases monotonically for λ > 0, and
lim
m→∞

Em = eλ. This means 0 < (1 + λ
m

)m < e; we are now going to prove

eλ(λ− 1) > −1

for λ > 0.
The derivative d

dλ
eλ(λ−1) = eλ·λ is positive for λ > 0; and eλ(λ−1) = −1

for λ = 0.

Theorem 4 (root extraction). Consider now the following process: we start
with an arbitrary integer y0 ≥ ξ, and then, while yi > ξ, put yi+1 = bΦ(yi)c.

This process will terminate at some finite step k ≥ 0 with yk = bξc.

Proof. Note that Φ(y) = ξϕ(y/ξ).

Lemma 5. bΦ(yi)c < yi for any integer yi > ξ.

Proof. bΦ(yi)c ≤ Φ(yi) < yi.

Lemma 6. If, for some integer yi, we have yi > ξ and yi+1 = bΦ(yi)c ≤ ξ,
then yi+1 = bξc.

Proof. We have yi+1 = bΦ(yi)c ≤ ξ < Φ(yi).

Note that (y > ξ)⇔ (yn > d), and

bΦ(y)c = b(bd/yn−1c+ (n− 1) · y)/nc.
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