Theorems for long division and root extraction

Viktor Krapivensky

January 15, 2021

1 Notations

$\mathbb{N}=\{0,1,2, \ldots\}$.

2 Three-by-two theorem

This theorem is extremely useful for basecase division.
Theorem 1 (three-by-two). Fix $B \in \mathbb{N}, B>1$, the base of our positional number system. Fix also numbers $x \in \mathbb{R}, y \in \mathbb{R}$ such that:

- $0 \leq x<B^{3}$;
- $B \leq y<B^{2}$;
- $x / y<B$.

Define:

- $q=\left\lfloor\frac{x}{y}\right\rfloor$, the true quotient;
- $q_{e}=\left\lfloor\left\lfloor\frac{x\rfloor}{\lfloor y\rfloor}\right\rfloor\right.$, our estimate of the quotient.

Then either $\left(q=q_{e}\right)$ or $\left(q=q_{e}-1\right)$.
Proof.
Lemma 1. $q \leq q_{e}$.
Proof. Define $\delta=x-\lfloor x\rfloor$; note that $0 \leq \delta<1$.
We have $\frac{x}{y} \leq \frac{x}{\lfloor y\rfloor}=\frac{\lfloor x\rfloor+\delta}{\lfloor y\rfloor}$. Then $q=\left\lfloor\frac{x}{y}\right\rfloor \leq\left\lfloor\frac{\lfloor x\rfloor+\delta}{\lfloor y\rfloor}\right\rfloor$.
We now want to prove $\left\lfloor\frac{\lfloor x\rfloor+\delta}{\lfloor y\rfloor}\right\rfloor=\left\lfloor\left\lfloor\frac{\lfloor x\rfloor}{\lfloor y\rfloor}\right\rfloor\right.$. Since $\delta<1$, for any integers M, N, K, the following holds: $(M<K N) \Longrightarrow((M+\delta)<K N)$.

Substitute $M=\lfloor x\rfloor, N=\lfloor y\rfloor, K=\left\lfloor\frac{M}{N}\right\rfloor+1$.

Lemma 2. $\lfloor x\rfloor<B(\lfloor y\rfloor+1)$.
Proof. $\lfloor x\rfloor \leq x<B y<B(\lfloor y\rfloor+1)$.
Define now the following values:

- $u=\lfloor x\rfloor$;
- $v=\lfloor y\rfloor$;
- $q_{\text {max }}=\frac{u+1}{v}$;
- $q_{\text {min }}=\frac{u}{v+1}$.

Lemma 3. The following bounds hold:

1. $q_{\text {max }}-\frac{u}{v} \leq \frac{1}{B}$;
2. $\frac{u}{v}-q_{\text {min }}<1$.

Proof. 1. $\frac{u+1}{v}-\frac{u}{v}=\frac{1}{v} \leq \frac{1}{B}$;
2. $\frac{u}{v}-\frac{u}{v+1}=\frac{u}{v(v+1)}$. By lemma 2, $u<B(v+1)$, so

$$
\frac{u}{v}-q_{\text {min }}<\frac{B(v+1)}{v(v+1)}=B / v \leq 1 .
$$

Lemma 4. $q \geq q_{e}-1$.
Proof. We have:

- $q_{\text {min }}<\frac{x}{y}<q_{\text {max }} ;$
- $q_{\text {min }}<\frac{u}{v}<q_{\text {max }}$.

Taking floor of both sides of these inequalities, we get:

- $\left\lfloor q_{\text {min }}\right\rfloor \leq q \leq\left\lfloor q_{\text {max }}\right\rfloor$;
- $\left\lfloor q_{\text {min }}\right\rfloor \leq q_{e} \leq\left\lfloor q_{\text {max }}\right\rfloor$.

By lemma $3, q_{\text {max }}-q_{\text {min }}<1+\frac{1}{B}<2$. This means that $\left\lfloor q_{\text {max }}\right\rfloor-\left\lfloor q_{\text {min }}\right\rfloor$ is either 0,1 , or 2 . We are only interested in the case of it being 2 , as in other cases ($q \geq q_{e}-1$) holds automatically.

Suppose $\left\lfloor q_{\text {max }}\right\rfloor-\left\lfloor q_{\text {min }}\right\rfloor=2$ and $q_{e}-q=2$. Then,

- $\left\lfloor q_{\max }\right\rfloor=q_{e}=\left\lfloor\frac{u}{v}\right\rfloor$, which implies $\frac{u}{v} \geq q_{e}=q+2$;
- $\left\lfloor q_{\text {min }}\right\rfloor=q$, which implies $q_{\text {min }}<q+1$.

Together, these statements imply $\frac{u}{v}-q_{\text {min }}>1$, contradicting lemma 3 .

3 Approximation of inverse theorem

This theorem is useful for calculating the inverse of a number with Netwon's method; namely, it tells us how to find the initial approximation of the inverse.

Theorem 2 (approximation of inverse). Fix $B \in \mathbb{N}, B>1$, the base of our positional number system. Fix then $n \in \mathbb{N}, n>0$, the number of words in our initial approximation. Fix a number $x \in \mathbb{R}$ such that $B^{n} \leq x<B^{n+1}$. Define:

- $r=\frac{B^{2 n}}{x}$, the true inverse (scaled up by $2 n$ places);
- $r_{e}=\left\lfloor\frac{B^{2 n}}{\lfloor x\rfloor+1}\right\rfloor$, our estimate of the scaled-up inverse.

Then:

- $r-2<r_{e}<r$;
- $B^{n-1} \leq r_{e}<B^{n}$.

Proof. $r_{e}<r$ is trivial: we increased the denominator $(\lfloor x\rfloor+1>x)$ and then took floor of the fraction.

Define now the following values:

- $u=\lfloor x\rfloor$;
- $r^{\prime}=\frac{B^{2 n}}{u+1}$.

Note that $r_{e}=\left\lfloor r^{\prime}\right\rfloor$. Then $r-r^{\prime}=\frac{B^{2 n}}{u(u+1)} \leq \frac{B^{2 n}}{B^{2 n}+B^{n}}<1$. Now we have

$$
r-r_{e}=\left(r-r^{\prime}\right)+\left(r^{\prime}-\left\lfloor r^{\prime}\right\rfloor\right)<1+1=2 .
$$

We can prove $B^{n-1} \leq r_{e}<B^{n}$ by substituting the maximum and minimum possible values of $\lfloor x\rfloor+1$ into $r_{e}=\left\lfloor\frac{B^{2 n}}{\lfloor x\rfloor+1}\right\rfloor$. The maximum possible value, B^{n+1}, gives us $r_{e} \geq B^{n-1}$; and the minumum possible value, $B^{n}+1$, gives us $r_{e} \leq B^{n}-1$.

4 Root extraction

We are given $d \in \mathbb{N}$ and root order $n \in \mathbb{N}, n \geq 2$. We need to calculate $\lfloor\sqrt[n]{d}\rfloor$.
Define the "true" root $\xi=\sqrt[n]{d}$. Using unmodified Newton's method, we are going to iterate $y \mapsto \Phi(y)$, where

$$
\Phi(y)=\frac{1}{n}\left(\frac{d}{y^{n-1}}+(n-1) \cdot y\right) .
$$

If $y=\xi \cdot \delta$, then $\Phi(y)=\xi \cdot \varphi(\delta)$, where

$$
\varphi(x)=\frac{1+(n-1) x^{n}}{n x^{n-1}}
$$

Theorem 3 (icky). $1<\varphi(x)<x$ for $x>1$.
Proof. We have

$$
\varphi(x)<x \Leftrightarrow 1+(n-1) x^{n}<n x^{n} \Leftrightarrow 1-x^{n}<0 .
$$

Now we will prove $\varphi(x)>1$.
$\frac{1+(n-1) x^{n}}{n x^{n-1}}>1 \Leftrightarrow(1+\varepsilon)^{n-1}(\varepsilon(n-1)-1)>-1$, where $\varepsilon=x-1>0$.
Substituting $\lambda=\varepsilon(n-1)>0$ and $m=n-1$, we get

$$
\left(1+\frac{\lambda}{m}\right)^{m}(\lambda-1)>-1
$$

The sequence $E_{m}=\left(1+\frac{\lambda}{m}\right)^{m}$ increases monotonically for $\lambda>0$, and $\lim _{m \rightarrow \infty} E_{m}=e^{\lambda}$. This means $0<\left(1+\frac{\lambda}{m}\right)^{m}<e$; we are now going to prove

$$
e^{\lambda}(\lambda-1)>-1
$$

for $\lambda>0$.
The derivative $\frac{\mathrm{d}}{\mathrm{d} \lambda} e^{\lambda}(\lambda-1)=e^{\lambda} \cdot \lambda$ is positive for $\lambda>0$; and $e^{\lambda}(\lambda-1)=-1$ for $\lambda=0$.

Theorem 4 (root extraction). Consider now the following process: we start with an arbitrary integer $y_{0} \geq \xi$, and then, while $y_{i}>\xi$, put $y_{i+1}=\left\lfloor\Phi\left(y_{i}\right)\right\rfloor$. This process will terminate at some finite step $k \geq 0$ with $y_{k}=\lfloor\xi\rfloor$.

Proof. Note that $\Phi(y)=\xi \varphi(y / \xi)$.
Lemma 5. $\left\lfloor\Phi\left(y_{i}\right)\right\rfloor<y_{i}$ for any integer $y_{i}>\xi$.
Proof. $\left\lfloor\Phi\left(y_{i}\right)\right\rfloor \leq \Phi\left(y_{i}\right)<y_{i}$.
Lemma 6. If, for some integer y_{i}, we have $y_{i}>\xi$ and $y_{i+1}=\left\lfloor\Phi\left(y_{i}\right)\right\rfloor \leq \xi$, then $y_{i+1}=\lfloor\xi\rfloor$.

Proof. We have $y_{i+1}=\left\lfloor\Phi\left(y_{i}\right)\right\rfloor \leq \xi<\Phi\left(y_{i}\right)$.

Note that $(y>\xi) \Leftrightarrow\left(y^{n}>d\right)$, and

$$
\lfloor\Phi(y)\rfloor=\left\lfloor\left(\left\lfloor d / y^{n-1}\right\rfloor+(n-1) \cdot y\right) / n\right\rfloor .
$$

