
glass : ordered set data structure for client-side
order books

Viktor Krapivensky
AKB System

April 20, 2025

Abstract

The “ordered set” abstract data type with operations insert, erase,
find, min, max, next and prev is ubiquitous in computer science. It is
usually implemented with red-black trees, B-trees, or B+-trees. We
present our implementation of ordered set based on a trie. It only
supports integer keys (as opposed to keys of any strict weakly ordered
type) and is optimized for market data, namely for what we call se-
quential locality. The following is the list of what we believe to be
novelties:

• Cached path to exploit sequential locality, and fast truncation
thereof on erase operation;

• A hash table (or, rather, a cache table) with hard O(1) time
guarantees on any operation to speed up key lookup (up to a
pre-leaf node);

• Hardware-accelerated “find next/previous set bit” operations with
BMI2 instruction set extension on x86-64;

• Order book-specific features: the preemption principle and the
tree restructure operation that prevent the tree from consuming
too much memory.

We achieve the following speedups over C++’s standard std::map

container: 6x—20x on modifying operations, 30x on lookup oper-
ations, 9x—15x on real market data, and a more modest 2x—3x
speedup on iteration. In this paper, we discuss our implementation.

1 Notation

By N we mean {0, 1, 2, . . .}.

1

By a mod b, where a ∈ Z, b ∈ N, b ̸= 0, we mean the integer r such that
0 ≤ r < b and r ≡ a (mod b).

By Zm we mean the ring of integers modulo m. We identify elements of
Zm with elements of N as follows:

• we identify x ∈ Zm with the minimal n ∈ N such that x = 1̂ + 1̂ + · · ·+ 1̂︸ ︷︷ ︸
n times

;

• we identify n ∈ N with the unique x ∈ Zm such that x = 1̂ + 1̂ + · · ·+ 1̂︸ ︷︷ ︸
n times

.

Above, 1̂ means the multiplicative identity of Zm.

2 Introduction

The “ordered set” is an abstract data type which maintains a set ξ of el-
ements, which is initially empty, and has at least the following operations
implemented:

• insert(⟨k, v⟩): assigns ξ ←− ξ ∪ {⟨k, v⟩} if ∄⟨k′, v′⟩ ∈ ξ : k′ = k;

• erase(⟨k, v⟩): assigns ξ ←− ξ \ {⟨k, v⟩};

• find(k): if ∃ ⟨k′, v⟩ ∈ ξ : k′ = k, returns v; otherwise, returns the special
blank symbol “#”;

• min() and max(): return m̃in {k | ⟨k, v⟩ ∈ ξ} and m̃ax {k | ⟨k, v⟩ ∈ ξ},
correspondingly;

• next(k): returns m̃in {k′ | ⟨k′, v⟩ ∈ ξ, k′ > k};

• prev(k): returns m̃ax {k′ | ⟨k′, v⟩ ∈ ξ, k′ < k}.

In the list above, m̃in and m̃ax specify regular min and max set operations
except that they return the special blank symbol “#” if the argument is
empty.

Typically all operations are O(log n). Additionally, min and min may be
cached and thus execute in O(1).

This abstract data type is ubiquitous in computer science. Examples of
where it is used include databases, file systems, and schedulers and epoll file
descriptors in the Linux kernel [11].

The C++ programming language has standard containers std::set and
std::map, which are typically implemented via red-black trees [9]. The Java

2

programming language provides TreeSet and TreeMap collections (under
java.utils package), which are also implemented via red-black trees [12] [13].
The Rust programming language provides BTreeSet and BTreeMap collec-
tions (under std::collections module) [4] [3], which are based on B-trees.

There are alternatives to red-black trees and variations of B-trees for im-
plementation of this abstract data type, e.g. AVL-trees and trees exploiting
the structure of the keys (for example, tries and radix trees for integers and
strings, van Emde Boas and fusion trees for integers).

3 Ordered set applied to client-side order book

management

For client-side order book management, we maintain an ordered set with
keys being prices and values being non-zero amounts. An pair of price and
amount is called a price level. We need to be able to handle the following
queries:

• adjust(π,∆),∆ ̸= 0: add ∆ to the previous amount at price π (if there
is no previous amount at this price, set the new amount to ∆). If the
new amount is zero, delete this price level. ∆ can be negative, but it
is guaranteed that no price level has negative amount;

• min() and max(): get minimum or maximum price of a level (or the
special blank symbol “#” if the order book is empty);

• next(π) and prev(π): get next or previous (after or before π) price of
a level (or the special blank symbol “#” if there is none).

min(),max(), next(π) and prev(π) can trivially be expressed in terms of
same-name ordered set operations. The adjust(π,∆) operation can be ex-
pressed in terms of ordered set abstract data type as follows:

3

Procedure adjust(π,∆)

Input: Price π, signed amount ∆ such that ∆ ̸= 0.
begin

A←− find(π)
if A = # then

a←− 0
else

a←− A
erase(⟨π, a⟩)

end
a′ ←− a+∆
if a′ ̸= 0 then

insert(⟨π, a′⟩)
end

end

3.1 Sequential locality and edge locality in market data

We define sequential locality as the closeness of the price of an event to the
price of previous event; In order words, the smaller |πi− πi−1|, the greater is
the sequential locality is. We also define edge locality as the closeness of the
price of an event to the best price; In order words, the smaller |πi − πbest|,
the greater the edge locality is.

We recorded market data on MOEX (Moscow Exchange) for instrument
CRM5 (futures contract for CNY/RUB) during the main trading session of
May 20, 2025. We then processed the recorded market data to visualize both
sequential locality and edge locality:

4

Figure 1: Sequential locality and edge locality in market data

0

50000

100000

150000

200000

250000

0 10 20 30 40 50 60 70 80 90

Sequential locality
Edge locality

N
u
m
b
er

of
ev
en
ts

Absolute price difference

We see that market data exhibits both strong sequential locality and
strong edge locality. Note also the peaks at what humans percept as “nice
round numbers”, e.g. 10, 15, 20, 50.

What this means is that we can cache the path to the previously accessed
key to exploit sequential locality. We could cache the path to the “best”
(minimal or maximal, depending on the side of the order book) key to exploit
edge locality, but this would be slower because, after deletion of the best key
there is no quick way to locate the next best one. Caching both would also
result in suboptimal performance because we would need to maintain two
cached paths instead of one.

4 Baseline implementation

4.1 The trie

Our implementation is based on an uncompressed trie. We fix K, the number
of bits in a key. We also fix N, the maximum number of children of a node.
N must be a power of two. We define C = log2N. If C does not divide K,
we pretend the higher bits of the key are zero. The tree, unless empty, has
the unique root node.

5

Figure 2: A trie

root

0 1

00 01

000

...

010

...

10

101

...

Above, K = 4, C = 1, N = 2. We call the grey “...” nodes “post-leafs”,
and nodes one level higher (with three-digit labels) “pre-leafs”.

Any node contains a N -bit mask indicating which children are present;
array of N index-pointers to children nodes, and an index-pointer to the
parent node (with a special value for “no parent” reserved for the root node).
An iterator contains the index of a pre-leaf node and the key, the C least
significant bits of which specify the index of a child of the post-leaf node.

We define L = ⌈K/C⌉, the distance from the root of the tree to a post-
leaf.

4.2 Index-pointers, slot allocator and multiple-node
allocation

Each index-pointer is an index into the array of nodes that a glass maintains.
Throughout this section, this array is referred to as N .

The main reason for the introduction of index-pointers is cache locality:
if the trie can never grow to 232 (sans two special values for “end/not found”
and “bad”) nodes, it is beneficial to only store 32-bit indices (even considering
that this introduces another level of indirection). The same applies to 16-bit
indices.

6

The data structure keeps track of free nodes via the slot allocator princi-
ple:

• free nodes are organized as a singly-linked list: a glass maintains the
“first free node” index-pointer, and one of the fields in a free node is
used as the “next free node” index-pointer;

• allocating a node consists of consulting the “first free node” index-
pointer; say its value is p. If p is the special “invalid” value, grow the
nodes array and load p again. Read the “next free node” field of N [p],
call that value q. Assign q to the “first free node” index-pointer, return
p as the index of the allocated node. Note that, unless the array is
grown, this is an O(1) operation. Note also that array growth becomes
exponentially less likely as the size of a glass grows; if full pre-allocation
is used, the array never grows at all;

• de-allocating a node with index p consists of writing the value of the
current “first free node” index-pointer into the “next free node” field
of N [p], then replacing the current “first free node” index-pointer by
p. Note this is an O(1) operation.

See the listings below for allocate-node and deallocate-node functions
(“#” denotes the special “invalid” value of an index-pointer).

Procedure allocate-node
Data: N , the array of nodes. f, the “first-free-node” index-pointer.
Output: The index-pointer to the allocated node.
begin

if f = # then
grow-array()

end
p←− f
f←− N [p].next free node
return p

end

Procedure deallocate-node(p)

Data: N , the array of nodes. f, the “first-free-node” index-pointer.
Input: p, the index-pointer to the node to de-allocate.
begin
N [p].next free node←− f
f←− p

end

7

The main drawback of such a scheme is that we never “give back” memory
that once has been used but currently is not, to the system. But this is widely
considered a good trade-off: many user-space memory allocators, such as the
one found in glibc [5], do not give back memory either. Memory management
in some dynamic programming languages, such as Lua [14] (PUC Lua, i.e.
the official implementation at https://lua.org/), uses the default libc’s
allocator as a base for implementing more complex allocation schemes.

We currently do not suffer from this drawback because we use full pre-
allocation.

We also have a procedure that allocates many nodes at once, without
saving and restoring the “first free node” index-pointer each time. It falls
back to the standard approach of allocating one-by-one if there are too few
nodes available.

4.3 Searching for next or previous set bit in mask

In the implementations of next and prev operations, we need to find the
index of the next/previous bit set in a mask, starting from the specified bit
index i (not including i) and returning a special “invalid” value if there is no
such bit.

This can be done via zeroing lower/higher bits (up to, and including, the
bit indexed i) and invoking the find-first-set/find-last-set instruction on the
result. So the problem can be reduced to the question of how to efficiently
zero lower of higher bits up to the specified index, inclusively.

For zeroing (i+1) lowest bits, the “obvious” solution of shifting right and
then left by (i+1) is incorrect: in C/C++, shifting by bit width is undefined
behavior, and non-SIMD shift instructions of x86-64 ISA treat the shift count
modulo W for bit width W, so, for example, shifting a 64-bit value by 64 is
equivalent to shifting by 0 (that is, no-op) instead of zeroing out the value.
We can mask (perform bitwise AND) the value with ((−1) ≪ i) ≪ 1, or,
equivalently, with (−2) ≪ i, which has one operation less. Above, negative
numbers are modulo 2W , where W is the bit width: (−1) denotes all-ones
value, (−2) denotes (W − 1) leading ones and then one zero bit.

For zeroing higher bits starting with, and including, bit index i, we can
use the bzhi instruction from BMI2 [7] [8] [2] instruction set extension on
x86-64. If bzhi cannot be used, we can mask (perform bitwise AND) the
value with (1≪ i)− 1.

8

4.4 Calculating an upper bound on capacity needed
for a size and maximum size for a given capacity

We now want to obtain an upper bound on the maximum number of nodes
required for a size S of a tree.

Define

r =

{
K mod C, K mod C ̸= 0;

C, K mod C = 0,

the number of bits actually used to discriminate between different children
of the root node.

There are two crucial facts: no level can have more than S nodes, and
no level can “give birth” to more than 2C nodes (2r for the root node).

Then, the upper bound on the number of the maximum number of nodes
at level i can be calculated as

Mi =

min{S, 1}, i = 0;

min{S, 2r}, i = 1;

min{S, 2C · Mi−1}, i ≥ 2.

The upper bound on the maximum number of nodes can then be calcu-
lated as

L−1∑
i=0

Mi.

To perform the inverse computation, that is, to calculate the number of
elements that will definitely fit into a tree with a given capacity, we can use
binary search using the formulae above.

4.5 Preemption principle and tree restructuring

We can now calculate the maximum tree size if all index-pointers are 16-bit
or 32-bit. We assign C = 5, K = 50 (on MOEX, prices have 14 decimal
digits; we allocate an extra higher bit for sign). The size of node is 48 bytes
for 16-bit index-pointers, 80 bytes for 32-bit index-pointers.

16-bit index-pointers

Tree size Memory consumption

9 · 102 339.05 Kb
9 · 103 2.93 Mb
9 · 104 N/A
9 · 105 N/A

32-bit index-pointers

Tree size Memory consumption

9 · 102 565.08 Kb
9 · 103 4.89 Mb
9 · 104 43.78 Mb
9 · 105 414.57 Mb

9

“N/A” means that the resulting capacity is more than index-pointers of
such size are able to address.

It is not unusual for order books to contain more than 106 entries. We
estimate the number of instruments we want to receive market data from to
be around 100. Say we have 8 Gb of memory to spend on the order books.
Note that we are going to need two trees per instrument: one for asks and
one for bids. It is easy to see that the maximum number of entries in a tree
that we can afford lies in [9 · 103; 9 · 104].

It may seem that we cannot use a trie for managing order books because
it needs to contain much more elements than we can afford. But note that:

• in practice, we only need to iterate over no more than 25 best prices;

• the situation when the best price goes through more than 9 · 103 non-
empty levels (either up or down) in a single trading session is extremely
unlikely.

So we propose the following solution to handle to handle this: on insert,
if the resulting size of the glass would be greater that the maximum size,
preempt the new level into a hash table. For min/max and next/prev, if the
result cannot be found in the glass (assuming the restrictions above, we can
prove that the size of the glass in this case is strictly less than the maximum
size), run the costly procedure of flushing the entries from the hash table
back to the tree.

More specifically:

• define number S as the maximum size of the glass (around 9 · 103 in
our case);

• define, for a min-glass (where the best price is the minimal one),

∞̂ = +∞,

π1 ◁ π2 = π1 < π2;

for a max-glass (where the best price is the maximal one),

∞̂ = −∞,

π1 ◁ π2 = π1 > π2.

In other words, ∞̂ means price that is worse than any “real” price that
a glass may contain, and π1 ◁ π2 means that price π1 is better than
π2.

10

• maintain a hash table that maps “preempted” prices to amounts, ini-
tially empty;

• maintain a number called “preemption threshold price”, denoted as
πthres, initially ∞̂;

• during insertion with price π:

⋆ if π ◁ πthres, insert as usual, except that if the insertion would
“overflow” the glass (the size would be greater than S), do not
insert it into the glass, but instead insert into the hash table and
assign πthres ←− π.

⋆ otherwise, insert into the hash table;

We call the operation of inserting into the hash table instead of the
glass itself a “preemption”.

• during find and erase with price π: if π ◁ πthres, perform the operation
on the glass ; otherwise, perform it on the hash table.

• as for the min/max and next/prev operations: in this setting, we only
support min and next for min-glass, and max and prev for max-glass.
Even then, next/prev are only supported within best B prices, B < S.
We define the notion of exceptional situation as the situation when:

⋆ we need to handle operation min/max/next/prev, and the result
of this operation on the glass itself (without elements preempted
to the hash table) would be #, and;

⋆ πthres ̸= ∞̂ (or, equivalently, the hash table is not empty).

In exceptional situation, we need to perform a tree restructure, which
consists of the following:

⋆ calculate the number of entries to un-preempt from the hash table
as nunpreempt = S−σ, where σ is the current size of the glass. Note
that nunpreempt cannot be zero:

⋄ for min/max operations, exceptional situation means σ = 0;

⋄ for next/prev on price π, exceptional situation means that σ
is the 0-based rank, counting from the best prices to the worst
ones, of π in the glass. As we only support values of π within
best B prices, σ ≤ B < S;

11

⋆ select nunpreempt elements (or less if the size of the hash table is
less) with best prices from the hash table. This can be done either
via sorting in O(n log n), or via “partial sorting” in O(n+k log k),
where n is the size of the hash table, k = nunpreempt;

⋆ insert those elements to the glass and remove them from the hash
table;

⋆ assign to πthres the best price remaining in the hash table, or, if
the hash table is now empty, ∞̂.

We need, then, to perform the operation that caused exceptional situ-
ation again: now, an exceptional situation cannot arise.

That’s a lot of text, but it boils downs to pretty compact code:

Procedure ob-init
Data: πthres, the preemption threshold price.
Γ, the glass data structure.
χ, the hash table.
begin

πthres ←− ∞̂
glass-init(Γ)

hash-table-init(χ)

end

Procedure ob-insert(π, a)

Data: πthres, the preemption threshold price.
Γ, the glass data structure.
χ, the hash table.
begin

if π ◁ πthres then
if glass-size(Γ) < glass-max-size(Γ) then

glass-insert(Γ, π, a)

else
hash-table-insert(χ, π, a)
πthres ←− π

end

else
hash-table-insert(χ, π, a)

end

end

12

Procedure ob-erase(π)

Data: πthres, the preemption threshold price.
Γ, the glass data structure.
χ, the hash table.
begin

if π ◁ πthres then
glass-erase(Γ, π)

else
hash-table-erase(χ, π)

end

end

Procedure ob-find(π)

Data: πthres, the preemption threshold price.
Γ, the glass data structure.
χ, the hash table.
begin

if π ◁ πthres then
glass-find(Γ, π)

else
hash-table-find(χ, π)

end

end

Procedure ob-best
Data: πthres, the preemption threshold price.
Γ, the glass data structure.
χ, the hash table.
begin

if glass-size(Γ) = 0 and πthres ̸= ∞̂ then
ob-restructure()

end
if this is a min-orderbook then

return glass-min(Γ)

else
return glass-max(Γ)

end

end

13

Procedure ob-next-best-after(π)

Data: πthres, the preemption threshold price.
Γ, the glass data structure.
χ, the hash table.
begin

if this is a min-orderbook then
f ←− glass-next

else
f ←− glass-prev

end
r ←− f(Γ)
if r = # and πthres ̸= ∞̂ then

ob-restructure()
r ←− f(Γ)

end
return r

end

14

Procedure ob-restructure
Data: πthres, the preemption threshold price.
Γ, the glass data structure.
χ, the hash table.
begin

σ ←− glass-size(Γ)

S ←− glass-max-size(Γ)

if σ = S then
error “ob-next-best-after()” price too far from best

end
navail ←− S − σ
B ←− hash-table-best-n(χ,min{navail, hash-table-size(χ)})
foreach ⟨π, a⟩ ∈ B do

glass-insert(χ, π, a)

hash-table-erase(χ, π)

end
if hash-table-size(χ) = 0 then

πthres ←− ∞̂
else
⟨π0, a0⟩ ←− hash-table-best-1(χ)
πthres ←− π0

end

end

4.6 Exact division of bit offset by C

In internal iterators, we represent the bit offset of a key as a signed number
κ, with depth-δ iterator having

κ = C · (L − 1− δ).

Thus, an iterator referring to the root node has κ = C · (L − 1), an iterator
referring to a pre-leaf node has κ = 0, an iterator referring to a post-leaf
node has κ = −C. This encoding helps us to traverse the tree: we can

• adjust the depth up or down by incrementing or decrementing κ by C;

• load the current chunk as (key ≫ κ)&M, where M = (1 ≪ C)− 1 is
a compile-time constant;

• insert a chunk η into the current position via key′ = key | (η ≪ κ);

15

and perform other similar actions.
Unfortunately, during insertion, we need to map κ back to the depth δ in

order to calculate the number of nodes to allocate. If we make κ represent
offsets in C-sized chunks, not in bits, then, in operations involving bit shifts,
we would have to shift by C · κ, not simply by κ, which is much slower.
If we represent offsets via pairs ⟨κ, κ/C⟩, then we would have to perform
arithmetic on two numbers instead of one when adjusting the depth up or
down.

The formula for mapping κ back to depth δ is

δ = L − 1− (κ/C).

Note that the division is always exact.
We can use approach from [6] to reduce this division to a shift and a

multiplication modulo 2W , where W is the bit width of the integer type in
which κ is represented. Specifically, we decompose C into a product

C = 2ℓ · ω,

where ℓ, ω ∈ N, ω is odd. Note that such a decomposition exists and is
unique for integer C > 0: set ℓ to the exponent of the maximal (integer)
power of two that divides C, set ω to C/2ℓ.

If a division by odd ω is known to be exact, we can:

• in compile-time: calculate ω−1, the inverse element of ω in Z2W ;

• in run-time: multiply the dividend by ω−1 modulo 2W .

Finally, we can calculate the depth as

δ = L − 1−
((
(κ≫ ℓ) · ω−1

)
mod 2W

)
.

If C is odd, then ℓ = 0, so we do not need the shift. If C is a power of two,
then ω = ω−1 = 1, so we do not need the multiplication.

5 Optional features

5.1 Cached path

5.1.1 Basics

In this section, bit sequences in bold mean keys, while underlined bit se-
quences refer to nodes corresponding to those sequences. As a special case,
ε refers to the root node.

16

As we have previously shown, market data exhibits strong sequential
locality. To exploit this, we can cache the path (up to a pre-leaf node) in the
trie to the last inserted element.

The cached path consists of:

• the last key;

• a path, which is an array ρ of index-pointers of length L;

• the number d ∈ N, d ≤ L representing the actual size of ρ.

The latter is needed in order to be able to truncate the cached path on erase
operation instead of invalidating all of the cached path.

Here is the situation where the cached path is full (L = d = 4):

Figure 3: A trie with full cached path

Cached path

root

0 1

00 01

000 010

... ...

10

101

...

5.1.2 Insertion and lookup

Above, the last operation was insertion of 010, so last key is 010, ρ is
⟨ε, 0, 01, 010⟩, d = 3. Suppose now we want to insert 011:

17

Figure 4: A trie with a to-be-inserted node

Cached path

root

0 1

00 01

000 010

...

011

... ...

10

101

...

The main idea is that we can quickly calculate the number of nodes in
the common prefix of the last key and the new key. Let k1, k2 be two keys,
W bits each. We can calculate the length λ of the common prefix, in chunks
of C bits, of k1 and k2 as following:

λ =

⌊
β − (W −K) + clzW (k1 ⊕ k2)

C

⌋
, (1)

where bias β = (−K) mod C, ⊕ denotes bitwise XOR operation, and clzW (x)
is the count-leading-zero-bits operation for bit width W, which returns W if
x is zero: it counts the number of consecutive zero bits, starting with the
most significant one, in x.

In the example above, we want to calculate the common prefix of last
key 010 and new key 011. Let us say W = 8; the shape of the tree implies
K = 3, C = 1.

• We calculate clz8(00000010⊕ 00000011) = 7;

• β = 0, (W −K) = 5, so the numerator is 0− 5 + 7 = 2;

• λ = ⌈2/1⌉ = 2.

18

So we jump right into ρ[λ], which is 01; it is, indeed, the lowest common
ancestor of 010 and 011 (if the latter would be in the tree).

The same sequence of steps can be used to locate the key 011 in the tree
if the last key is 010.

The count-leading-zeros instruction is readily available on all modern
hardware, and is reasonably fast. Apart from it, the computation compiles
down to a XOR, an addition or a subtraction, and division by a constant.
Modern compilers optimize integer division by a constant, using results from
[6], down to a sequence of cheaper operations. For values of C such that
C ≤ 6 and C is not a power of two (C ∈ {3, 5, 6}), the sequence only in-
volves single multiplication and single right shift.

We use 6 as a realistic upper bound on C because, on C > 6, the glass
would occupy an unrealistic amount of memory; also, the mask would need
to contain more than 64 bits, which would slow down common operations on
64-bit hardware.

5.1.3 Erasure

Suppose we have a tree (not a trie!), where all leafs are at the same depth,
and two paths: the red one goes from the root down to some node (not
necessarily a leaf); the blue one goes from a node (not necessarily the root)
down to a leaf. In the picture below, the red path is ⟨ε, 0, 01, 010⟩; the blue
path is ⟨010, 0101⟩; their intersection, the node 01, is colored purple:

19

Figure 5: A tree with red and blue paths

root

0 1

00 01

000 001

0000 0001 0010

010 011

0101 0110

10 11

100

1000

111

1111

Suppose we know that:

• the distance from a root to a leaf is L (on the picture above, L = 4);

• the length of red path, in edges, is R (on the picture above, R = 3);

• the length of the blue path, in edges, isB (on the picture above, B = 1);

• the distance from the root to the lowest common ancestor of the last
nodes of red and blue paths, is Z (on the picture above, the lowest
common ancestor is 010, so Z = 3).

The number I of nodes in the intersection of the red and blue paths can be
calculated as follows:

I = max{0, Z+B+ 1− L}.

On the picture above, I = 1. Also note that it turns out we do not even need
R for the calculation of I.

On erasure, our “red path” is the cached path, and the “blue path”
consists of the nodes and edges that have been removed. We substitute
L = L, and calculate Z as minimum of:

20

• d, and

• the length of the common prefix, in chunks of C bits, of the last key
and the erased key (see formula 1).

We then truncate the cached path by I: that is, we assign

d←− max{0, d− I}.

The max operator is needed because, if the whole tree has been removed,
including the root, I = d+ 1 > d.

Let us now briefly go back to our trie examples in the previous subsub-
section. Here is what the cached path looks like after the deletion of the key
011 (after it has been inserted):

Figure 6: A trie after erasure: cached path is truncated

Cached path

root

0 1

00 01

000

...

010

...

10

101

...

The cached path is now truncated (d < L).

5.2 Hash table

In order to further speed up key lookup, the glass also supports a hash table
(or, rather, a cache table). It maps keys without the last chunk (the least

21

significant C bits) into index-pointers to the pre-leaf the key belongs to. It
uses separate chaining. However, it is different from a standard hash table
in the following ways:

• A chain is a doubly-linked list, instead of singly-linked, in order to
support hard O(1) removal by pointer. Insertion is always done into
the beginning of a chain;

• A lookup only inspects first J elements of a chain, so that lookup is
hard O(1). If a match is found among the first J elements, it returns
“exists” and the pre-leaf that the key is mapped to. If the chain length
is less or equal to J, it returns “doesn’t exist”. If the chain length is
greater then J, it returns “don’t know”. J is a compile-time constant
which is currently set to 5;

• On a resize (the hash table only supports growing, not shrinking), the
relative order of the elements within new chains that previously were in
the same chain is preserved. This is done via moving of some elements
in the old chains into the beginning of the new chains and then reversing
the order of elements in the new chains. This is done because we believe
that recently inserted elements are more likely to be accessed.

The next-in-hash-table/previous-in-hash-table index-pointers are embed-
ded into the nodes of the tree, although only used in pre-leaf nodes. To be
able to compare keys during lookup, we also have “hash table key” field in
every node, although it is also only used in pre-leaf nodes. The first-in-hash-
table index-pointers (we don’t need pointers to the end of the chains) are
stored in a separate array. Its size is kept at the largest power of two which
is not greater than the tree’s capacity.

5.3 Probability of hash table’s “don’t know” answer

We can use results from [10] to calculate the probability of hash table’s
“don’t know” answer for a key that is present.

Assume simple uniform hashing. The probability that a given bucket in
a hash table with n elements and b buckets has size k, 0 ≤ k ≤ n, is

p(k) =

(
n

k

)(
1

b

)k (
b− 1

b

)n−k

.

We can calculate the probability of finding our key in the first J buckets,

22

among k, 1 ≤ k ≤ n buckets, as follows:

q(k) =

{
1, k ≤ J ;

J/k, k > J.

We can calculate the probability of hash table’s “don’t know” answer, if
the key is present, as follows:

p+ = 1−

n∑
k=1

p(k)q(k)

1− p(0)
.

The division is because we only interested in cases where the bucket is not
empty (otherwise the key can not be present in this bucket).

The probability of hash table’s “don’t know” answer if the key is not
present is just a probability that a given bucket contains more than J ele-
ments:

p− =
n∑

k=J+1

p(k).

We calculated p+ and p− as functions of J, with n = 9210 (the exact
upper bound on the number of elements in a trie with 16-bit index pointer),
b = 215 (the number of buckets in a trie with 16-bit pointers with maximal
possible capacity):

Figure 7: Probabilities of hash table’s “don’t know” answer

1× 10−16

1× 10−14

1× 10−12

1× 10−10

1× 10−8

1× 10−6

0.0001

0.01

1 2 3 4 5 6 7 8 9 10

p+
p−

P
ro
b
ab

il
it
y

J

23

For J = 5, p+ ≈ 3.76 · 10−7, p− ≈ 2.14 · 10−8.

5.4 Cached iterators to the first and last elements

glass supports caching iterators to the first and last elements. There are two
modes of caching: eager and lazy.

The iterators can be either valid, point to end (meaning the trie is empty),
or be in bad state (the latter is only possible in the lazy mode).

On insertion, if the inserted element is less/greater than the previous
first/last element, the corresponding cached iterator (or both, if the tree was
empty) is updated.

Eager and lazy modes differ in the behaviour on erasure (without loss of
generality, assume the trie is not empty after erasure; otherwise, we simply
assign end to both cached iterators instead):

• in eager mode, if the first or last element has been removed, the corre-
sponding cached iterator is updated immediately (the relatively costly
procedure of finding the first or last element is performed). On first/last
query, the corresponding cached iterator is returned;

• in lazy mode, if the first or last element has been removed, the corre-
sponding cached iterator is put into bad state. On first/last query, if
the corresponding cached iterator is not in bad state, it is returned; oth-
erwise, the procedure of finding the first or last element is performed,
the corresponding cached iterator is updated and returned.

We can always afford a separate value for iterator’s bad state because we
always set maximum capacity to at most 2W − 2, where W is the width, in
bits, of an index-pointer.

5.5 Trash encoding

Trash encoding is a way to lower memory usage at a small runtime cost.
Glass requires an allocator that produces zeroed out memory at allocation
(in which case the whole new chunk must be zeroed out) and reallocation
that grows an allocated chunk (in which case the new memory must be zeroed
out). This is required so that we don’t need to zero out a new node’s mask: it
is either freshly-allocated memory, or was zeroed out on erasure. The default
allocator uses calloc/realloc+memset/free.

The idea is that we can use the mmap/mremap/munmap system calls for
these operations. They have granularity of a page (4096 bytes on mod-
ern hardware) and, on Linux, they are able to overcommit memory (pro-
duce pages that look zeroed out from the userspace’ point of view, but are

24

only associated with physical pages on the first write). This only works if
vm.overcommit memory parameter is set to 0 (“heuristic overcommit han-
dling”; it is the default) or 1 (“always overcommit”) [1].

The trash encoding is just a special way to encode an unused node’s
“next-free-node” field:

• we introduce a new special value that means “the next node in the
nodes array”; it is encoded as 0;

• the special value that means “no next node” is encoded as 1;

• a reference to the node with index i is encoded as (i+2). This addition
can never overflow because we always set maximum capacity to at most
2W − 2, where W is the width, in bits, of an index-pointer; and the
index of a node is always less than the capacity.

When “next-free-node” fields are encoded in this way, we do not need to
additionally initialize all the nodes in the beginning and the new nodes after
a reallocation, so the never-used portion of nodes in the end of the nodes
array (up to a page boundary) does not consume memory.

The “next-free-node” field with value v of an unused node with index j
is decoded as follows:

• if v = 0, the result is (j + 1);

• it v = 1, the result is “there’s no next node”;

• otherwise, the result is (v − 2).

5.6 Compressed iterators

If the hash table is used (so that all the pre-leaf nodes contain “hash table
key” field) we can only store the C least significant bits of the key in an
iterator instead of the full key. We can then recover the full key via lookup
in the node array and a bitwise OR operation, although this is slower than
using an “uncompressed” iterator.

Assume C ≤ 8. A compressed iterator would then consist of ⟨i, K⟩ pair,
where i is an index-pointer, K is an 8-bit value with the C least significant
bits of the key. For our setup with 16-bit index pointers, K = 50, C = 5,
this reduces the size of an iterator from 16 bytes to 4 bytes.

Glass supports such “compressed” iterators (but only if the hash table
is used and C ≤ 8). It provides functions to convert compressed iterator
to/from uncompressed ones, and to get a pointer to the element behind a
compressed iterator to perform read/write access through it.

25

6 Implementation details

Our implementation targets C99 with GNU extensions, although it also com-
piles as C++11 with GNU extensions in order to be able to compare it against
C++’ std::map.

We use a custom pre-processor that helps in writing “X macro”-styled
generic code, and also managing macros (undefining them in the end), in-
cluding settings that are passed as preprocessor defines. The code including
the glass source must define GLASS PREFIX; all functions will be prefixed with
it. For example, if GLASS PREFIX is my glass, the creation function will be
called my glass create. In order to do this, we define GLASS NAME(SUFFIX)

macro that concatenates together (with ##) GLASS PREFIX, “ ” and SUFFIX.
The name of a function then can be written as GLASS NAME(create). The
pre-processor allows us to write @create instead of GLASS NAME(create).
It also serves to reduce error-prone boilerplate related to keeping track of
macros that should be undefined in the end, including the settings defini-
tions.

The preprocessor is called “ato”, because that’s the name of the “@”
character in Japanese.

7 Benchmarks

7.1 Set and setting

All measurements were performed on Xiaomi RedmiBook 15 TM2039-44450
laptop.

We have taken the following measures to ensure the benchmarks are as
fair as possible:

• in order to minimize possible interferences, the benchmark was run in
Linux kernel’s system console; any other applications, including the X
server, were not launched;

• /sys/devices/system/cpu/cpufreq/policy*/scaling governor poli-
cies were set to “performance”;

• before running the benchmark, the driver process has been reniced with
“renice -n -20”;

• the driver process was pinned to a single core with “taskset -c 1”;

26

• timing measurements were taken with “mfence, lfence, rdtsc, lfence”
sequence of assembly instructions, but there is no significant difference
in results if clock gettime(CLOCK MONOTONIC, ...) is used instead.

In order to be fair, we have also implemented a custom allocator for
std::map, which uses the same “slot allocator” principle that the glass ’ al-
locator uses. It is faster than glibc’s allocator used by default because:

• slot allocator doesn’t do locking;

• slot allocator’s allocation (assuming no need to allocate a new arena,
which is very rare) and deallocation run in hard O(1) time;

• glibc’s allocator uses red-black trees to manage the list of free chunks,
which is slow because of pointer chasing.

It is consistently faster in benchmarks. At first we used a separate slot
allocator for each std::map copy, but the approach with a single common
slot allocator turned out not only to be faster, but also to produce the results
that make more sense.

7.2 Synthetic vs real market data

For benchmarking, we can use real market data. Unfortunately, as it is, it
does not provide us a way to measure the performance of specific operations
(insert, erase, find of existing/non-existing element, iteration over 25 best
prices).

In order to measure these operations separately, we generate synthetic
data: to generate a sequence of unique prices, we use a random number gen-
erator to generate differences between successive prices that are distributed
just like the real market data, except that zero difference is prohibited. We
generated synthetic price sequences using the method described above for
insert, erase, and find (of existing/non-existing element) operations.

7.3 Amplification

Amplification is an action of replacing an operation in a sequence with mul-
tiple identical copies of it.

It only makes sense to amplify read-only operations (find and iteration),
because a second insert with the same key degenerates to a lookup (which
would say the key already exists in the glass), and likewise a second erase with
the same key degenerates to a lookup (which would say the key is not present

27

in the glass). These modifying operations also modify the cached path, so
any time measurements of their amplified copies would not be representative.

Because we can measure the performance of find operation with synthetic
data, we only amplify the operation of iteration over the best 25 prices (in
the captions of the graphs below referred to as “iter”). The amplification is
done for the sequence of operations representing the real market data. We
chose to set the amplification coefficient to 100x.

When a read-only operation is amplified, it also makes sense to remove all
other read-only operations from the input in order to be closer to only mea-
suring this operation. In the context of the previous paragraph, this means
that we remove find operations from the input when measuring amplified
iteration.

7.4 Multiple copies

In order to have a more realistic benchmark, we create multiple copies of
the data structure being benchmarked (either glass or std::map) that are
operated upon: instead of applying the operation to a single copy, we apply
it to all the copies.

Since in reality we are going to operate upon order books of up to 100
instruments, benchmarks with multiple copies are more faithful, in particular
regarding the behaviors related to CPU caches.

The graphs below are parameterized by the number of copies (from 1 to
32, inclusively).

7.5 Graphs

Each test was run with the following number of iterations (n is the number
of copies):

• ⌊2500
n
⌋ for tests that use synthetic data;

• ⌊7500
n
⌋ for tests that use the real market data.

28

Figure 8: Synthetic data: insert

11

12

13

14

15

16

17

18

19

20

21

22

5 10 15 20 25 30

Against std::map
Against std::map w/ custom allocator

S
p
ee
d
u
p
ra
ti
o

Number of copies

Figure 9: Synthetic data: erase

6

8

10

12

14

16

18

20

5 10 15 20 25 30

Against std::map
Against std::map w/ custom allocator

S
p
ee
d
u
p
ra
ti
o

Number of copies

29

Figure 10: Synthetic data: find existing

30

40

50

60

70

80

90

5 10 15 20 25 30

Against std::map
Against std::map w/ custom allocator

S
p
ee
d
u
p
ra
ti
o

Number of copies

Figure 11: Synthetic data: find non-existing

10

15

20

25

30

35

40

5 10 15 20 25 30

Against std::map
Against std::map w/ custom allocator

S
p
ee
d
u
p
ra
ti
o

Number of copies

30

Figure 12: Real market data: no amplification

8

9

10

11

12

13

14

15

16

17

5 10 15 20 25 30

Against std::map
Against std::map w/ custom allocator

S
p
ee
d
u
p
ra
ti
o

Number of copies

Figure 13: Real market data: iter amplified 100x

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

5 10 15 20 25 30

Against std::map
Against std::map w/ custom allocator

S
p
ee
d
u
p
ra
ti
o

Number of copies

31

8 Availability

The code of our implementation and LATEX source of this paper are available
at https://github.com/shdown/glass-paper. The code is licensed under
the MIT license. The source of this paper is licensed under the Creative
Commons BY 4.0 license.

References

[1] Linux kernel developers. https://www.kernel.org/doc/

Documentation/vm/overcommit-accounting. [Online; accessed
27-May-2025].

[2] AMD. AMD64 technology: AMD64 architecture program-
mer’s manual. volume 3: General-purpose and system instruc-
tions. https://www.amd.com/content/dam/amd/en/documents/

processor-tech-docs/programmer-references/24594.pdf. [Online;
accessed 27-May-2025].

[3] Rust documentation. BTreeMap in std::collections. https://doc.

rust-lang.org/std/collections/struct.BTreeMap.html. [Online;
accessed 27-May-2025].

[4] Rust documentation. BTreeSet in std::collections. https://doc.

rust-lang.org/std/collections/struct.BTreeSet.html. [Online;
accessed 27-May-2025].

[5] Free Software Foundation. Freeing after malloc (the GNU C li-
brary). https://www.gnu.org/software/libc/manual/html_node/

Freeing-after-Malloc.html. [Online; accessed 27-May-2025].

[6] Torbjörn Granlund and Peter L. Montgomery. Division by invariant
integers using multiplication. SIGPLAN Not., 29(6):61–72, June 1994.

[7] Intel. Documentation for bzhi u32 and bzhi u64 intrinsics.
https://www.intel.com/content/www/us/en/docs/cpp-compiler/

developer-guide-reference/2021-8/bzhi-u32-64.html. [Online;
accessed 27-May-2025].

[8] Intel. Intel® 64 and ia-32 architectures software developer’s manual,
volume 2 (2A, 2B, 2C, & 2D): Instruction set reference. https:

//cdrdv2-public.intel.com/789581/325383-sdm-vol-2abcd.pdf.
[Online; accessed 27-May-2025].

32

[9] ISO. ISO/IEC JTC1 SC22 WG21 N 4860: Programming languages —
C++. https://isocpp.org/files/papers/N4860.pdf, 2020. [Online;
accessed 27-May-2025].

[10] R. Christopher Lacher. Hash table analysis (course material). https://
www.cs.fsu.edu/~lacher/courses/notes/hashanalysis.pdf. [On-
line; accessed 27-May-2025].

[11] Rob Landley. Red-black trees (rbtree) in Linux. Linux ker-
nel documentation, file “rbtree.txt”. https://www.kernel.org/doc/

Documentation/rbtree.txt. [Online; accessed 21-April-2025].

[12] Oracle. TreeMap (Java Platform SE 8). https://docs.oracle.com/

javase/8/docs/api/java/util/TreeMap.html. [Online; accessed 27-
May-2025].

[13] Oracle. TreeSet (Java Platform SE 8). https://docs.oracle.com/

javase/8/docs/api/java/util/TreeSet.html. [Online; accessed 27-
May-2025].

[14] Waldemar Celes Roberto Ierusalimschy, Luiz Henrique de Figueiredo.
Lua 5.3 reference manual — lua Alloc. https://www.lua.org/manual/
5.3/manual.html#lua_Alloc. [Online; accessed 27-May-2025].

33

